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 This paper investigates the dynamic response of a coupled two-degree-of-freedom system
 with a cubic stif fness nonlinearity in both degrees of freedom .  The mathematical model is
 based on a coupled system of Duf fing’s equations .  The governing equations are derived for
 a two-dimensional airfoil oscillating in pitch and in plunge ,  but they can be applied to
 nonaeronautical problems ,  such as mechanical systems ,  by discarding the aerodynamics
 terms and setting the appropriate parameters to correspond to those for the particular
 dynamic system under consideration .  Only the harmonic solution is considered and we use
 the method of slowly varying amplitude to investigate the dynamic response of the system
 to an external excitation .  The equilibrium points are computed and a linear analysis is
 carried out to determine the stability of the equilibrium points .  Examples are given for a
 dynamic system without aerodynamic forces to illustrate the complex structure of the jump
 phenomenon where the solution jumps from one branch of the amplitude-frequency curve
 to the other .  An example in aeroelasticity is given which shows the behaviour of the airfoil
 motion as the velocity approaches the linear flutter speed .  Numerical simulations are also
 carried out to verify the analytical results .  ÷   1997 Academic Press Limited

 1  INTRODUCTION

 I N AEROELASTIC INVESTIGATIONS OF AIRCRAFT ,  we usually assume that the structural
 behaviour of aircraft components is linear (Bisplinghof f  et al .  1955 ;  Fung 1969) .
 However ,  in reality nonlinearities are present in one form or the other .  Structurally ,
 they may occur in the restoring forces and can be treated as nonlinear springs for
 example ,  springs with free-play ,  hysteresis or cubic nonlinearities .  These types of
 nonlinearities have been investigated by Woolston  et al .  (1957) for a two-dimensional
 airfoil performing pitching and plunging motions using an analog computer .  There are
 serious drawbacks in the use of an analog computer to study nonlinear flutter ,  and
 accuracy is often not as high as we would desire in order to investigate the
 characteristics of the airfoil motion fully .

 An alternate approach was suggested by Shen (1959) using the well-known Krylof f &
 Bogoliubof f (1947) method in nonlinear vibration theory .  The original limitation of
 weak nonlinearities can be removed by adopting a modification given by Popov (1957) .
 The analysis assumes the existence of a periodic solution dominated by the fundamen-
 tal harmonic .  The amplitude of oscillation in the degree of freedom which contains the
 nonlinearity is prescribed ,  and the critical velocity at which the specified oscillation
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 will be sustained is then determined .  However ,  it has not been demonstrated how large
 the magnitude of the nonlinearities is admissible and how the ef fects of initial
 conditions on the flutter boundary can be accounted for .

 For a one-degree-of-freedom system with cubic restoring force in the absence of
 aerodynamic loads ,  Jones & Lee (1985) investigated the multi-valued response curve of
 amplitude versus frequency and showed the ef fects of initial conditions on the steady
 state of the system under forced oscillations .  Lee & LeBlanc (1986) and Lee &
 Desrochers (1987) expanded the numerical technique developed by Jones & Lee (1985)
 and describe a method for nonlinear flutter analysis that eliminates the limitations
 inherent in the earlier methods (Woolston  et al .  1957 ;  Shen 1959) by the use of a
 time-marching finite-dif ference scheme .  Using incompressible aerodynamics ,  the
 aeroelastic equations for a two-dimensional airfoil performing plunging and pitching
 motions are written as a pair of simultaneous finite dif ference equations .  The ef fect of
 initial conditions on nonlinear flutter was studied numerically by varying the displace-
 ment from equilibrium of the pitch angle at the start of the airfoil motion .  More
 detailed studies were later carried out by Price  et al .  (1994 ,  1995) who computed power
 spectral densities ,  phase-space plots ,  Poincare ́   maps and Lyapunov exponents of the
 airfoil response to investigate the possibility of occurrence of chaos for certain airfoil
 parameters .

 In this study ,  we concentrate on the harmonic solution of a coupled two-degree-of-
 freedom system with a cubic stif fness nonlinearity in both degrees of freedom .  The
 method of slowly varying amplitude is employed to analyse the harmonic response .
 This results in an autonomous system of first-order nonlinear dif ferential equations in
 a 12-dimensional phase-space .  A stable equilibrium point of the resultant system gives
 one harmonic solution for the original system of equations .  Linear analysis is then
 carried out to determine the stability of the equilibrium point .  The analysis demonstr-
 ates that similarly to a one-degree-of-freedom system ,  a jump phenomenon from one
 steady state to another may occur for certain system parameters and range of the
 excitation frequency and amplitude .  The amplitude response curve as a function of
 excitation frequency has a much more complicated structure than the corresponding
 one-degree-of-freedom system .  Numerical integrations are used to verify the results
 obtained from the theoretical analysis and they also reveal some interesting dynamical
 features .  Subharmonic solutions may exist under certain conditions ,  and these have
 been investigated numerically by Wong  et al .  (1995) .

 2 .  THEORETICAL ANALYSIS

 2 . 1 .  E QUATIONS OF  M OTION OF A  N ONLINEAR  C OUPLED  T WO -D EGREE - OF -F REEDOM

 S YSTEM WITH  A ERODYNAMIC  F ORCES

 In this section ,  we investigate the harmonic response of a two-degree-of-freedom
 system with a cubic spring nonlinearity in both degrees of freedom .  We choose for our
 system a two-dimensional airfoil oscillating in pitch and in plunge .  The equations of
 motion derived can readily be adapted to other nonaeronautical systems ,  such as
 coupled mechanical systems ,  by neglecting the aerodynamics terms and setting the
 appropriate parameters to correspond to the particular dynamic system under
 consideration .  It is well known that for a nonlinear system the output oscillations may
 have the same or dif ferent frequencies than the input excitation when the amplitude of
 the forcing function is varied .  For a harmonic response ,  we restrict the output
 oscillation to have the same frequency as the input excitation force .
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 Figure 1 .  Two-degree-of-freedom airfoil motion .

 Figure 1 shows the notations used in the analysis of a two-degree-of-freedom motion
 of an airfoil oscillating in pitch and in plunge .  The plunging deflection is denoted by  h ,
 positive in the downward direction ,   a   is the pitch angle about the elastic axis ,  positive
 with the nose up .  The elastic axis is located at a distance  a h b  from the midchord ,  while
 the mass centre is located at a distance  x a b  from the elastic axis .  Both distances are
 positive when measured towards the trailing edge of the airfoil .  The aeroelastic
 equations of motion for linear springs have been derived by Fung (1969) .  For nonlinear
 restoring forces such as those for cubic springs considered in this paper ,  they can be
 written as follows :

 j  0  1  x a a 0  1  2 z j

 v #
 U *

 j  9  1 S  v #
 U *

 D 2

 ( j  1  b j  j  3 )  5  p ( τ  ) ,  (1)

 x a

 r 2
 a

 j  0  1  a 0  1  2
 z a

 U *
 a 9  1

 1
 U * 2  ( a  1  b a a  3 )  5  r ( τ  ) ,  (2)

 where  j  5  h  / b  is the nondimensional displacement and the prime denotes dif ferentia-
 tion with respect to the nondimensional time  τ  ,  defined as

 τ  5
 Ut
 b

 .  (3)

 In equations (1) and (2) ,   v #    is given by

 v #  5
 v j

 v a

 ,  (4)

 where  v j  ,  z j  ,  v a   and  z a   are the uncoupled plunging- and pitching-mode natural
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 frequencies and damping ratios ,  respectively ,   r a   is the radius of gyration about the
 elastic axis ,   b j   and  b a   are the nonlinear spring constants ,   U * is defined as

 U *  5
 U

 b v a

 ,  (5)

 and

 p ( τ  )  5  2
 1

 π m
 C L ( τ  )  1

 P ( τ  ) b

 mU 2  ,  r ( τ  )  5
 2

 π m r 2
 a

 C M ( τ  )  1
 Q ( τ  )

 mU 2 r 2
 a

 (6)

 in which  C L ( τ  ) and  C M ( τ  ) are the lift and pitching moment ,  respectively .   P ( τ  ) and
 Q ( τ  )   are the external applied force and moment ,   m  is the airfoil mass per unit length
 and  m   is the airfoil – air mass ratio .

 For incompressible flow ,  Fung (1969) gives the following expressions for  C L ( τ  ) and
 C M ( τ  ) :

 C L ( τ  )  5  π  ( j  0  2  a h a 0  1  a 9 )  1  2 π  h a  (0)  1  j 9 (0)  1  ( 1 – 2  2  a h ) a  9 (0) j f  ( τ  )

 1  2 π E τ

 0
 f  ( τ  2  s  )( a 9 ( s  )  1  j  0 ( s  )  1  ( 1 – 2  2  a h ) a 0 ( s  ))  d s  ,  (7)

 C M ( τ  )  5  π  ( 1 – 2  1  a h ) h a  (0)  1  j 9 (0)  1  ( 1 – 2  2  a h ) a  9 (0) j f  ( τ  )

 1  π  ( 1 – 2  1  a h ) E τ

 0
 f  ( τ  2  s  ) h a 9 ( s  )  1  j  0 ( s  )  1  ( 1 – 2  2  a h ) a 0 ( s  ) j  d s

 1
 π
 2

 a h ( j  0  2  a h a 0 )  2  ( 1 – 2  2  a h )
 π
 2

 a 9  2
 π
 16

 a  0 ,  (8)

 where the Wagner function  f  ( τ  ) is given by

 f  ( τ  )  5  1  2  c  1 e
 2 e  1 τ  2  c  2 e

 2 e  2 τ  ,  (9)

 and the constants  c  1  5  0 ? 165 ,  c  2  5  0 ? 335 ,  e  1  5  0 ? 0455 and  e  2  5  0 ? 3 are given by Jones
 (1940) .

 2 . 2 .  A MPLITUDE -F REQUENCY  R ELATION FOR  H ARMONIC  O SCILLATION

 We assume that the external applied forces are sinusoidal and without loss in
 generality ,  the excitation is only applied in the pitch degree of freedom .  In this case ,
 P ( τ  )  5  0   and we write

 Q ( τ  )  5  Q 0  sin( v τ  )  (10)
 and let

 F  5
 Q 0

 mU 2 r 2
 a

 ,  (11)

 so that the second term in equation (6) for  r ( τ  ) becomes  F  sin( v τ  ) .
 After introducing four new variables

 w 1  5 E τ

 0
 e 2 e  1 ( τ  2 s  ) a  ( s  )  d s  ,  w 2  5 E τ

 0
 e 2 e  2 ( τ  2 s  ) a  ( s  )  d s  ,

 (12)

 w 3  5 E τ

 0
 e 2 e  1 ( τ  2 s  ) j  ( s  )  d s  ,  w 4  5 E τ

 0
 e 2 e  2 ( τ  2 s  ) j  ( s  )  d s  ,
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 equations (1) and (2) can be written as

 c 0 j  0  1  c 1 a  0  1  c 2 j  9  1  c 3 a 9  1  c 4 j  1  c 5 j  3  1  c 6 a  1  c 7 w 1  1  c 8 w 2  1  c 9 w 3  1  c 1 0 w 4  5  f  ( τ  ) ,  (13)

 d 0 j  0  1  d 1 a 0  1  d 2 a 9  1  d 3 a  1  d 4 a  3  1  d 5 j  9  1  d 6 j  1  d 7 w 1  1  d 8 w 2  1  d 9 w 3  1  d 1 0 w 4  5  g ( τ  ) ,

 (14)

 and the coef ficients in these equations are given in Appendix A .
 For large values of  τ   when transients are damped out and steady-state solutions are

 obtained ,   f  ( τ  )  5  0 .  For sinusoidal external forces ,  we assume the plunge and pitch
 motion to be of the following form :

 j  ( τ  )  5  a 1 ( τ  )  cos( v τ  )  1  b 1 ( τ  )  sin( v τ  ) ,  a  ( τ  )  5  a 2 ( τ  )  cos( v τ  )  1  b 2 ( τ  )  sin( v τ  ) .  (15)

 Here  a i   and  b i   ( i  5  1 ,  2) are assumed to be slowly varying functions in  τ  .  The second
 time derivatives are considered to be small and neglected .  This approach is often used
 in perturbation analysis (Jordan & Smith 1983) .  We write  w i   ( i  5  1 ,  2 ,  3 ,  4) as follows :

 w 1  5  a 3 ( τ  )  cos( v τ  )  1  b 3 ( τ  )  sin( v τ  ) ,  w 2  5  a 4 ( τ  )  cos( v τ  )  1  b 4 ( τ  )  sin( v τ  ) ,
 (16)

 w 3  5  a 5 ( τ  )  cos( v τ  )  1  b 5 ( τ  )  sin( v τ  ) ,  w 4  5  a 6 ( τ  )  cos( v τ  )  1  b 6 ( τ  )  sin( v τ  ) .

 From equations (12) we take the time derivative of  w i   and obtain

 w 9 1 ( τ  )  5  a  ( τ  )  2  e  1 w 1 ( τ  ) ,  w 9 2 ( τ  )  5  a  ( τ  )  2  e  2 w 2 ( τ  ) ,
 (17)

 w 9 3 ( τ  )  5  j  ( τ  )  2  e  1 w 3 ( τ  ) ,  w 9 4 ( τ  )  5  j  ( τ  )  2  e  2 w 4 ( τ  ) .

 Note that  j  3 ( τ  ) and  a  3 ( τ  ) can be written as

 j  3 ( τ  )  5  3 – 4 r 2 ( a 1  cos( v τ  )  1  b 1  sin( v τ  ))  1  h higher  harmonics  in  3 v τ  j ,
 (18)

 a  3 ( τ  )  5  3 – 4 R  2 ( a 2  cos( v τ  )  1  b 2  sin( v τ  ))  1  h higher  harmonics  in  3 v τ  j ,

 where

 r 2  5  a  2
 1  1  b 2

 1 ,  R  2  5  a  2
 2  1  b 2

 2 .

 Here  r  and  R  denote the amplitudes of  j   and  a   respectively .  Assuming the higher
 harmonic terms in equations (18) to be small and upon substituting equations (15) ,  (16)
 and (18) into (13) ,  (14) and (17) ,  we obtain a system of 12 first-order nonlinear
 ordinary dif ferential equations after matching the coef ficients of cos( v τ  ) and sin( v τ  ) .
 The resulting equations in matrix form are given as :

 A x 9  5  y ( x ) ,  (19)

 where

 (20) A  5 F H
 0

 0
 I
 G ,  H  5 3

 c 2

 2 2 v c 0

 d 5

 2 2 v d 0

 2 v c 0

 c 2

 2 v d 0

 d 5

 c 3

 2 2 v c 1

 d 2

 2 2 v d 1

 2 v c 1

 c 3

 2 v d 1

 d 2

 4 ,  I  5 3
 1  0  .  .  .  0
 0  1  .  .  .  0
 ?  ?  ?  ?  ?  ?  ?  ?  ?  ?

 0  .  .  .  0  1
 4 ,

 x  5  h a 1  ,  b 1  ,  a 2  ,  .  .  .  ,  a 6  ,  b 6 j T ,  y ( x )  5  h  y 1 ( x ) ,  y 2 ( x )  .  .  .  y 1 2 ( x ) j T

 Here  I  is an 8  3  8 identity matrix and  y i ( x ) are given in Appendix B .  Since the interest
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 is in the harmonic solutions of equations (1) and (2) to external sinusoidal excitations ,
 periodicity condition is enforced by requiring that  a i   and  b i   are constants .  The harmonic
 solutions of equations (13) and (14) are identified by the equilibrium points of the
 system of equations (19) .  Setting  a 9 i  5  0 and  b 9 i  5  0 ,  we obtain a system of 12 nonlinear
 algebraic equations .  In deriving the expressions for  a 1  , b 1  , a 2 ,  and  b 2 ,  equation (19) is
 first solved for  a 3  , b 3  ,  .  .  .  ,  a 6 ,  and  b 6  which are then substituted into the expressions for
 a 1  ,  b 1  ,  a 2 ,  and  b 2  to give the following :

 2 m 1 a 1  1  p 1 b 1  2  n 1 a 2  1  s 1 b 2  1  q 1 r 2 b 1  5  0 ,

 p 1 a 1  1  m 1 b 1  1  s 1 a 2  1  n 1 b 2  1  q 1 r 2 a 1  5  0 ,
 (21)

 2 m 2 a 1  1  p 2 b 1  2  n 2 a 2  1  ( s 2  1  q 2 R 2 ) b 2  2  F  5  0 ,

 p 2 a 1  1  m 2 b 1  1  n 2 b 2  1  ( s 2  1  q 2 R 2 ) a 2  5  0 ,

 where the coef ficients  m 1  ,  m 2  ,  etc .  are given in Appendix C .
 A frequency – amplitude relation can be derived and is given by

 ( D 2
 1  1  D 2

 2 ) R 2  2  D  2
 3 F

 2  5  0 ,  (22)

 where

 D 1  5  m 1 [ m 2 n 2  1  p 2 ( s 2  1  q 2 R  2 )]  1  (  p 1  1  q 1 r 2 )[  p 2 n 2  2  m 2 ( s 2  1  q 2 R  2 )]  2  n 1 (  p 2
 2  1  m 2

 2 ) ,

 D 2  5  m 1 [  p 2 n 2  2  m 2 ( s 2  1  q 2 R  2 )]  2  (  p 1  1  q 1 r 2 )[ m 2 n 2  1  p 2 ( s 2  1  q 2 R  2 )]  1  s 1 (  p 2
 2  1  m 2

 2 ) ,

 (23)
 D 2

 3  5  [ m 1 m 2  1  (  p 1  1  q 1 r 2 ) p 2 ]
 2  1  [ m 1  p 2  2  (  p 1  1  q 1 r 2 ) m 2 ]

 2 ,

 and

 R 2  5
 m  2

 1  1  (  p 1  1  q 1 r 2 ) 2

 n 2
 1  1  s 2

 1
 r 2 .  (24)

 The basic relation between the amplitude ( r  and  R ) and frequency ( v  ) for the
 two-degree-of-freedom system governed by equations (1) and (2) are now represented
 by equations (22) and (24) .  Clearly ,  a jump phenomenon and a multi-valued
 amplitude-frequency relation can be observed for the coupled system .  Substituting the
 definitions given in Appendices B and C into equations (22) and (24) ,  we find that the
 resulting equation is a polynomial of degree 11 in  r 2 .  Once the value of  r  is computed ,
 then  R  can be determined from equation (24) .  For certain values of  v   both equations
 admit multi-valued amplitudes .  Using the values of  r  and  R ,  the equilibrium points are
 then determined from equations (21) .

 2 . 3 .  L INEAR  S TABILITY  A NALYSIS

 To study the linear stability of the system of equations given by equation (19) about the
 equilibrium point  x e ,  we introduce a small perturbation in the form

 x  5  x e  1  h e l τ  ,  (25)
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 where  u h  u  Ô  1 .  Substituting into equation (19) ,  we obtain the following equation :

 A ( h 9  1  l h )e l τ  5  y ( x e  1  h e l τ ) .  (26)

 The right-hand side of equation (26) is a nonlinear function which can be linearized
 using Taylor’s expansion ,  such that

 y ( x e  1  h e l τ )  5  y ( x e )  1  D x [ y ( x e )] h e l τ  1  2 ( u h  u 2 ) .  (27)

 Define the Jacobian matrix  D x [ y ( x e )]  5  J x  ,  and since  y ( x e )  5  0 ,  we obtain from
 equation (26) the following :

 h 9  5  [ A 2 1 J x  2  l I ] h .  (28)

 The linear stability of  x e   is determined by the characteristic equation

 u A 2 1 J x  2  l I u  5  0 ,  (29)

 and  x c   is stable if Re( l )  ,  0 for all the roots .

 3 .  RESULTS AND DISCUSSION

 In Section 2 ,  a coupled two-degree-of-freedom system with a cubic stif fness non-
 linearity in both degrees of freedom is studied .  The equations are derived using a
 physical model of an airfoil submerged in a moving medium .  However ,  the analysis is
 applicable to other mechanical systems in a stationary medium ,  and the aerodynamic
 forces can be discarded by dropping the appropriate terms .  We first investigate the
 motion of a one- and two-degree-of-freedom dynamic system and later give an
 example in aeroelasticity .  In order to apply the analysis to systems in the absence of
 aerodynamic forces ,  we show the necessary modifications to the coef ficients in
 equations (13) and (14) by the following discussion .

 For an airfoil placed in a stationary medium ,  the equations of motion in dimensional
 form are shown below after neglecting the aerodynamics terms in the equations given
 by Fung (1969) :

 mh 0  1  S a  0  1  C h h 9  1  K h ( h  1  b h h 3 )  5  P ( t ) ,
 (30)

 Sh 0  1  I a a 0  1  C a a 9  1  K a  ( a  1  b a b  3 )  5  Q ( t ) .

 These represent the equations for a two-degree-of-freedom system with inertia
 coupling .  Since  U  5  0 ,  equations (30) can be reduced to (1) and (2) by defining a
 nondimensional time  τ  5  t  / T  to replace equation (3) where  T  is a reference time .  By
 re-defining equation (5) to be  U *  5  1 / T v a   and retaining the previous nondimensional
 parameters ,  equations (13) and (14) can be used in place of (30) by setting  c 0  5  1 ,
 c 1  5  x a  , c 2  5  2 z j v #  / U * , c 4  5  ( v #  / U *) 2 , c 5  5  ( v #  / U *) 2 b j  , c 3  5  c 6  5  c 7  5  c 8  5  c 9  5  c 1 0  5  0 ,
 d 0  5  x a  / r 2

 a  , d 1  5  1 , d 2  5  2 z a  / U * , d 3  5  1 / U * 2 , d 4  5  b a  / U * 2 , d 5  5  d 6  5  d 7  5  d 8  5  d 9  5
 d 1 0  5  0 .  We note that  v   is a nondimensional frequency and is related to the
 dimensional frequency by

 v  5
 Ω

 U * Ω a

 ,  (31)

 where  Ω a   is the pitch natural frequency .
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 3 . 1 .  O NE -D EGREE - OF -F REEDOM  D YNAMIC  S YSTEM

 For the sake of completeness ,  we give a brief discussion of a one-degree-of-freedom
 system when the aerodynamics terms in equations (1) and (2) are neglected .  Most of
 the material found in this section is given by detail by Jones & Lee (1985) .  If  x a   is set
 equal to zero in equations (1) and (2) ,  the system can be decoupled and the resulting
 equations to be solved are those for a simple one-degree-of-freedom vibration system
 with a cubic nonlinearity .  For example ,  if we consider the  a   degree-of-freedom motion ,
 we can write equation (2) in the form of a Duf fing’s equation :

 a  0  1  c a 9  1  k a  1  b a  3  5  F  sin( v τ  ) .  (32)

 Neglecting the damping term  c a 9 ,  Duf fing derived the following relation between the
 amplitude  R  and the frequency  v   for the above nonlinear equation (Stoker 1950) :

 v  2  5  k  1  3 – 4 b R 2  2
 F
 R

 ,  (33)

 which relates  v   to the amplitude  R  of the oscillation .  Equation (33) is an interesting
 relation in that ,  for certain values of the parameters ,  there are three values of  R
 associated with one value of  v  .  This gives rise to a jump phenomenon in which the
 solution jumps from one branch of the amplitude – frequency curve to another .  A
 first-order expansion can also be developed for equation (32) which includes the
 damping term  c a 9 .  This yields (Mickens 1981)

 v  2  5  1  1  3 – 4 b R  2
 Ú

 F
 R
 F 1  2

 c  2 R 2

 F  2  G 1/2

 ,  (34)

 where we have assumed that the linear coef ficient ,   k ,  is equal to 1 .  From equation (34)
 we observe that

 u R u  #  F  / c ,  (35)

 where  F  is assumed positive .  Jones & Lee (1985) used the method of Krylof f &
 Bogoliubof f (1947) and obtained a more accurate amplitude – frequency relation ,  as
 follows :

 v  2  5  1  1  3 – 4 b R  2  2
 c 2

 2
 Ú

 F
 R
 F 1  2

 c 2 R  2

 F  2  S 1  1  3 – 4 b R 2  2
 c 2

 4
 D G 1/2

 ,  (36)

 from which an upper limit for  R  can be found ,  namely

 R 2  5  2
 2

 3 b
 S 1  2

 c 2

 4
 D  Ú F  4

 9 b  2  S 1  2
 c 2

 4
 D 2

 1
 4 F  2

 3 b c  2 G 1/2

 ,  (37)

 in which the  1  sign is used for  b  .  0 .
 Comparisons of the maximum amplitude given by equations (35) and (37) dif fer

 significantly in the case studied by Jones & Lee (1985) and the estimate from equation
 (35) can be grossly misleading .

 It should be noted that these approximations do not yield any information about the
 ef fect of initial conditions on the final solution after the transients have died down .  In
 other words ,  the ef fect of the initial conditions which determines the branch of the
 jump where the solution lies is not clear from the analytical studies .  Only numerically
 can we assess the ef fect of the initial conditions .

 To study the behaviour of equation (32) we choose for our model the constants
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 Figure 2 .  Response curves for Duf fing’s equation :   –  –  – ,  equation (33) ;   –  ?  - ,  equation (34) ;   –  ?  ?  – ,
 equation (36) ;   s ,  numerical ,   a  (0)  5  2 ? 0 .

 c  5  0 ? 1 , k  5  1 ,  b  5  0 ? 1 and  F  5  0 ? 4 .  This corresponds to the following airfoil para-
 meters in equation (2) :   z a  5  0 ? 05 , U *  5  1 ,  b a  5  0 ? 1 and  F  5  0 ? 4 .  The response curve  R
 versus  v   is shown in Figure 2 for 0 ? 2  #  v  #  1 ? 4 and in Figure 3 for 1 ? 18  #  v  #  1 ? 38 .  In
 the latter case we observe more clearly bending over the response curve to the right .  It
 can be seen that the approximation (36) obtained using the Krylof f & Bogoliubof f
 method is much more accurate than formula (34) in the region about the peak at  R  5  3 .
 Also shown is Duf fing’s approximation based on zero damping ( c  5  0) .

 The numerical simulations were performed using Houbolt’s (1950) scheme .  The
 details of the finite-dif ference time-marching technique are given by Jones & Lee
 (1985) .  Our experience in generating the response curve showed that steady-state
 solutions were obtained in typically 10 – 40 cycles of period 2 π  / v .  Away from the
 nonunique parts of the curve ,  i . e .   v  #  1 ? 18 and  v  $  1 ? 31 ,  solutions were obtained with
 fewer iterations .  In the range 1 ? 18  ,  v  ,  1 ? 31 the branch of the response curve on
 which the solution lies depends upon the initial conditions  a  (0) and  a 9 (0) .  For
 instance ,  with  a 9 (0)  5  0 several computations were made with various starting values
 a  (0) .  With  a  (0)  5  2 the jump from the lower branch occurred at about  v  5  1 ? 22 while
 with  a  (0)  5  2 3 ? 5 the jump occurred at about  v  5  1 ? 32 ,  as shown on Figure 3 .

1.38
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 Figure 3 .  Response curves for Duf fing’s equation magnified in the jump region :   –  –  – ,  equation (33) ;   –  ?  - ,
 equation (34) ;   –  ?  ?  – ,  equation (36) ;   D ,  numerical ,   a  (0)  5  2 3 ? 5 ;   s ,  numerical ,   a  (0)  5  2 ? 0 .
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 3 . 2 .  T WO -D EGREE - OF -F REEDOM  D YNAMIC  S YSTEM

 We shall consider two examples to illustrate the complex structure of the jump
 phenomenon for a two-degree-of-freedom dynamic system with inertia coupling .  The
 coef ficients are arbitrary ,  chosen to generate a set of dif ferential equations for analysis
 purposes ,  and they coincide with those equations studied by the authors previously
 using numerical schemes [for example ,  Wong  et al .  (1995)] .  Other parameters can be
 used ,  since the analysis is formulated with only the assumptions that the response is
 harmonic and the amplitudes are slowly varying functions of time .  Hence there should
 be no limitations to the range of parameters of the system ,  as long as these assumptions
 are satisfied .  The first example considers the two uncoupled natural frequencies to be
 equal ,  while the second examines the case where the frequency separation is fairly
 large .

 3 . 2 . 1 .  Example I

 The equations studied in this case are

 0 ? 25 a 0  1  j 0  1  0 ? 25 j  9  1  j  1  0 ? 25 j  3  5  0 ,
 (38)

 a 0  1  0 ? 25 j  0  1  0 ? 25 a 9  1  a  1  0 ? 25 a  3  5  F  sin( v τ  ) .

 The coef ficients of these two coupled equations are similar .  Following the discussion on
 equations (30) ,  these expressions can be obtained from (1) and (2) by setting  x a  5  0 ? 25 ,
 r a  5  1 , U *  5  1 ,  v #  5  1 ? 0 ,  z a  5  z j  5  0 ? 125 ,  b a  5  b j  5  0 ? 25 .

 To give an indication of the response characteristics for a one-degree-of-freedom
 system with the given system parameters ,  we decouple the equations into single
 degree-of-freedom systems by setting  x a  5  0 .  The results thus obtained are used for
 comparison purposes with the two-degree-of-freedom system .  Figure 4 shows the
 amplitude response curve of  a  ( τ  ) against the excitation frequency  v   corresponding to
 F  5  0 ? 5 ,  1 ? 5   and 3 ? 0 ,  respectively .  The results are typical of those for the Duf fing
 equation with dif ferent amplitudes of the excitation force (Stoker 1950) .  It can be
 verified that the frequency-amplitude relation given in equation (22) is identical to (36)
 for the one-degree-of-freedom system .  For the coupled system governed by equations
 (38) ,  Figure 5(a ,  b) shows the amplitude response curves of  a  ( τ  ) and  j  ( τ  ) against the
 excitation frequency  v   for the two-degree-of-freedom system corresponding to
 F  5  0 ? 5 ,  1 ? 5   and 3 ? 0 .  These results were plotted from the relations given in equations
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 (22) and (24) .  Clearly ,  the structure of the response curves for the two-degree-of-
 freedom system is much more complex than that for the one-degree-of-freedom system
 as  F  increases .  For small values of  F  ,  there always exists a harmonic solution in both
 one and two-degree-of-freedom systems .  As  F  increases ,  we observe the occurrence of
 a jump phenomenon and multi-valued amplitude-frequency relations in both systems .
 Another interesting result noted here is that unlike a one-degree-of-freedom system ,
 we found that for a particular  F  and for certain values of  v  ,  there may not exist a
 harmonic solution for the nonlinear system .

 The response curve can be divided into various segments where it is possible to
 identify the existence of harmonic solutions .  For example ,  at  F  5  1 ? 5 in Figure 5(a , b)
 the linear stability analysis given by equation (29) predicts that for  v  ,  1 ? 3015 the
 system has only one harmonic solution .  For 1 ? 3015  ,  v  ,  1 ? 3095 ,  the system has two
 harmonic solutions and there exists a jump phenomenon in this segment .  In the interval
 (1 ? 3095 ,  1 ? 3555) ,  the corresponding equilibrium points are stable ,  but in the interval
 (1 ? 3555 ,  1 ? 5038) ,  harmonic solution is not possible .  This interval decreases as  v #    moves
 away from unity .  Some preliminary studies by computing the eigenvalues of the fixed
 points of Poincare ́   maps show that there exists two Hopf bifurcations at  v  5  1 ? 3555 and
 1 ? 5038 .  The solutions for 1 ? 3555  ,  v  ,  1 ? 5038 appear to be quasiperiodic ,  but more
 detailed results confirming this observation will appear in a later paper .  For
 1 ? 5038  ,  v  ,  1 ? 595 ,  a harmonic solution is found and increasing  v   to the interval
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 (1 ? 595 ,  1 ? 7234) ,  a second jump phenomenon occurs .  For  v  .  1 ? 7234 ,  only harmonic
 solutions are predicted .

 These observations are confirmed by numerical integration of the equations of
 motion and are represented by the open circles in the figure for  F  5  1 ? 5 .  When  F  5  3 ? 0 ,
 the responses are more complex than those exhibited for  F  5  1 ? 5 .  In addition to failure
 in reaching harmonic solutions for certain values of  v  ,  we also observe the existence of
 chaotic motions and subharmonic solutions .  However ,  this case has not be extensively
 studied both analytically and numerically as in the previous case for  F  5  1 ? 5 .

 3 . 2 . 2 .  Example II

 In this example ,  the analytical results are supplemented by results from numerical
 simulations .  The time-marching finite-dif ference techniques used are an eighth order
 scheme given by Lee & LeBlanc (1986) and a fourth-order Runge-Kutta technique
 whereby equations (13) and (14) are expressed in finite dif ference form .  Both methods
 given the same results .

 The equations studied in this case are given as follows :

 j  0  1  0 ? 2 a 0  1  0 ? 8 j  1  0 ? 1 j  3  5  0 ,
 (39)

 0 ? 2 j  0  1  a 0  1  0 ? 1 a 9  1  a  1  0 ? 1 a  3  5  F  sin( v τ  ) ,

 and they are obtained from equations (1) and (2) by choosing the parameters  x a  5  0 ? 2 ,
 r a  5  1 , U *  5  1 ,  v #  2  5  0 ? 8 ,  z a  5  0 ? 05 ,  z j  5  0 ,  b a  5  0 ? 1 ,  b j  5  0 ? 125 .  Again ,  it is emphasized
 that the system parameters are chosen to coincide with a set of dif ferent equations that
 the authors have previously studied and there is no specific significance to the chosen
 parameters .

 Figure 6(a) shows the amplitude response curve  r  for  j  ( τ  ) against the excitation
 frequency  v   when  F  5  1 ? 0 .  The corresponding response in the  a   degree of freedom is
 given in Figure 6(b) which shows a more complex structure in the jump region .  We
 find that ,  for  v  5  1 ? 5 ,  equations (39) have seven equilibrium points .  Once these values
 are computed ,  the stability can be determined from the sign of the real part of all the
 eigenvalues evaluated from equation (29) .  The results are summarized in Table 1 .  Only
 three equilibrium points are found to be stable according to the linear stability
 analysis .

 A detailed numerical study was also carried out for this particular example to
 demonstrate some of the features of the coupled system .  The existence of multi-valued
 harmonic solutions is confirmed by a numerical simulation using equations (13) and
 (14) .  Figure 7(a – c) shows three stable harmonic solutions for  a  ( τ  ) and  j  ( τ  ) from the
 numerical solutions using the following initial conditions :

 [ a  (0) ,  a  9 (0) ,  j  (0) ,  j  9 (0)]  5  [ 2 1 ,  0 ,  0 ,  0] ,

 [ a  (0) ,  a  9 (0) ,  j  (0) ,  j  9 (0)]  5  [ 2 3 ,  5 ,  2 3 ,  5] ,

 [ a  (0) ,  a  9 (0) ,  j  (0) ,  j  9 (0)]  5  [0 ,  5 ,  0 ,  5] .

 The first set of initial conditions gives a solution on the lower branch of the
 amplitude – frequency curve ,  while the second set gives a solution on the upper branch .
 The third set of initial conditions gives the solution between these two branches .  The
 solid line in the figures denotes the  a   response while the dashed line denotes the  j
 response .  Our computational results indicated that the harmonic solutions at the upper
 branch of the amplitude – frequency response curve are in phase with approximately the
 same amplitude .  On the lower branch ,  the solutions have dif ferent amplitudes and are



 NONLINEAR DYNAMICS AND AEROELASTICITY  237

3.0

10

ω

R

4

2

0.5 1.0 1.50

6

8

(b)

2.0 2.5

10

r

4

2

6

8

(a)

0

 Figure 6 .  Amplitude response curve of a two-degree-of-freedom system with  F  5  1 ? 0 :  (a)  j  -response ;  (b)
 a  -response .

 180 8  out of phase .  In-between these two branches ,  the  a  - and  j  - amplitudes are close to
 those on the lower and upper branches ,  respectively .  The phase dif ference between the
 a   and  j   responses is 180 8 .  From our analysis ,  the analytical solutions (15) can be
 written as

 a  ( τ  )  5  R  sin( v τ  1  f  1 ) ,  j  ( τ  )  5  r  sin( v τ  1  f  2 ) .  (40)

 Once the values of  a i   and  b i   are computed ,  we obtain the amplitudes  R  and  r  and the
 corresponding phase angles .  These results are shown in Table 2 and comparison with
 numerical results shows good agreement .

 Phase-space plots of  a 9 ( τ  ) versus  a  ( τ  ) and  j  9 ( τ  ) versus  j  ( τ  ) were computed and
 typical plots are given in Figure 8(a – c) for  j   in the lower ,  upper ,  and middle branches
 of the amplitude-frequency response curve .  The forcing frequency is  v  5  1 ? 5 .  These

 T ABLE  1
 Equilibrium points and signs of Re( l ) for Example II

 a 1  b 1  a 2  b 2  Re( l 1 )  Re( l 2 )  Re( l 3 )  Re( l 4 )  Stability

 0 ? 042
 0 ? 559
 0 ? 892
 0 ? 494
 2 ? 023

 2 3 ? 434
 2 3 ? 734

 0 ? 293
 0 ? 961

 2 1 ? 127
 2 4 ? 244
 2 3 ? 019
 2 3 ? 615

 3 ? 362

 2 0 ? 135
 2 1 ? 686
 2 2 ? 567
 2 0 ? 089
 2 2 ? 066
 2 3 ? 162
 2 3 ? 682

 2 0 ? 940
 2 2 ? 898
 2 3 ? 244

 0 ? 766
 3 ? 083

 2 3 ? 329
 3 ? 315

 2
 1
 1
 2
 2
 2
 2

 2
 1
 1
 2
 1
 2
 2

 2
 2
 2
 2
 2
 1
 2

 2
 1
 2
 2
 2
 1
 2

 Stable
 Unstable
 Unstable

 Stable
 Unstable
 Unstable

 Stable
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 figures ,  and similar ones with dif ferent initial conditions that are not included in this
 paper ,  show that steady state orbits are reached after the transients have been damped
 out .  The time it takes to reach steady state depends on the initial conditions and the
 value of the forcing frequency  v .

 Power-spectral-density plots are often used to investigate the periodic nature of the
 system response .  A typical power spectral density plot for the  j   degree-of-freedom

 T ABLE  2
 Amplitudes and phases of response for Example II

 R
 Analytic

 f  1  (deg)
 Analytic

 r
 Analytic

 f  2  (deg)
 Analytic

 f  1  2  f  2  (deg)
 Analytic

 R
 Numerical

 r
 Numerical

 f  1  2  f  2  (deg)
 Numerical

 0 ? 9497
 3 ? 3528
 4 ? 1368
 0 ? 7712
 3 ? 7112
 4 ? 5913
 4 ? 9544

 8

 174

 2 48

 0 ? 2960
 1 ? 1118
 1 ? 4373
 4 ? 2727
 3 ? 6341
 4 ? 9860
 5 ? 0245

 2 172

 2 6

 2 48

 180

 180

 0

 0 ? 9510

 0 ? 7727

 5 ? 0262

 0 ? 2964

 4 ? 3283

 5 ? 0972

 180

 180

 0
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 j  -response between upper and lower branches of jump .

 motion at  v  5  1 ? 5 is given in Figure 9 .  This figure clearly shows periodic motion ,  with
 the fundamental harmonic at least three orders of magnitude higher than the second
 harmonic .  Notice that the harmonics with frequencies 3 v   and 5 v   observed in the
 figures can be directly obtained from expanding  a  3  and  j  3  using equations (18) .  The
 assumption made in the theoretical analysis that higher harmonics can be neglected
 appears to be well justified in this example .

 3 . 3 .  A N  E XAMPLE IN  A EROELASTICITY FOR A  T WO -D EGREE - OF -F REEDOM  S YSTEM

 To investigate the ef fects of aerodynamics in equations (13) and (14) ,  we use the same
 airfoil parameters as those in Example II and choose  a h  5  2  1 – 2  and  m  5  25 .  This
 corresponds to a light airfoil whose elastic axis is placed at the  1 – 4 -chord point .  There is
 no particular significance to the choice of this airfoil configuration .  Other values of  a h

 and  m   can be used ,  since there are no restrictions on the parameters in the analysis .  In
 order for the linear aerodynamics to be valid ,  the value of the forcing function  F  is
 kept small ,  so that the pitch angle is less than 15 8  while at the same time the plunge
 motion  j   is within the range for equations (7) – (9) to be applicable .  These values are
 chosen assuming the airfoil thickness-ratio is small ,  and the profile permits attached
 flow in a cycle of oscillation .  Using these airfoil parameters ,  we first determine the
 linear flutter speed obtained by setting the nonlinear stif fness terms to be zero .  Its
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 Figure 9 .  Power spectral density for  j  -response .

 value  U L   is found to be 2 ? 423 .  Two values of  U * will be investigated ,  one at 41% and
 the other at 95% of  U L ,  that is ,   U *  5  1 and 2 ? 3019 .

 The  j  - and  a  -amplitude-frequency curves are given in Figure 10(a ,  b) ,  where the
 amplitude ratios  r  and  R  are shown for  U *  5  1 and  F  5  0 ? 03 .  The units of  R  are
 degrees .  This value of excitation is chosen in order that the linear aerodynamics theory
 can be expected to be valid .  The case without consideration of aerodynamics is shown
 in Figure 11(a ,  b) .  Both sets of figures show the presence of two peaks at  v
 approximately 0 ? 86 and 1 ? 07 .  These frequencies can be estimated from equations (13)
 and (14) .  By decoupling the two equations ,  we can show that  v a  5  1 / U * and  v j  5  v a v #
 by definition .  Since  U *  5  1 and  v #  2  5  0 ? 8 in this example ,  we obtain  v j  5  0 ? 89 and
 v a  5  1   which are close to the observed values in the figures .  It is interesting to see that
 the aerodynamic forces decrease the amplitude of the  j  -mode ,  while the  a  -mode
 remains relatively unchanged .  The numerical simulation results are also included in the
 figures and they are denoted by the open circles .  It is seen that good agreement is
 obtained .  Comparison with Figure 6(a ,  b) shows that the complex jump condition is not
 encountered .  However ,  when the forcing amplitude  F  is increased to larger values ,
 these jumps are also detected for the nonaerodynamic case .  No computations were
 carried out with aerodynamic forces included since the linear aerodynamics assump-
 tions are violated .

 Increasing  U * to 0 ? 95  U L   shows the disappearance of one of the modes [Figure
 12(a ,  b)] .  It is seen from this figure that the peak occurs at  v  <  0 ? 43 .  For the uncoupled
 modes ,  the natural frequencies  v a   and  v j   are estimated to be 0 ? 4344 and 0 ? 3885 ,
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 medium :  (a)  j  -response ;  (b)  a  -response .

 respectively ,  for  U *  5  2 ? 3019 and  v #  2  5  0 ? 8 .  The forcing amplitude in this case is
 F  5  0 ? 002 ,  which is very small .  However ,  this is expected since only a weak external
 forcing to the airfoil is required in order to maintain a harmonic motion of suf ficiently
 large amplitude as the linear flutter speed is approached .  Also ,  near the flutter
 boundary ,  coalesence of the two modes accounts for the observation of only one peak
 in Figure 12(a ,  b) .

 Comparison of Figure 11(a ,  b) with 13(a ,  b) shows the shapes of the response curves
 to be similar ,  except for the locations of the peaks and their amplitudes .  The
 dimensional frequency ratio  Ω  / Ω a   is actually the same since ,  in the form given as  v  ,  it
 is scaled by a factor of  U * as shown in equation (31) .  The dif ferences in amplitude are
 due to the value of the forcing  F  which decreases from 0 ? 03 to 0 ? 002 .  In Figure 12(a) ,
 the peak location when expressed in ratio of dimensional frequencies is 0 ? 9898 ,  which
 is close to the pitch frequency in Figure 10(a) .  In these two examples ,  multiple values
 are not predicted for these values of  F .  The solution is harmonic ,  and the stability
 analysis shows all real parts of  l   in equation (21) to be negative .
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 4 .  CONCLUDING REMARKS

 In this paper ,  we investigate the dynamic response of a coupled two-degree-of-freedom
 system with a cubic nonlinearity in the restoring force .  The system chosen for our
 model is a two-dimensional airfoil oscillating in pitch and in plunge .  The equations
 formulated can readily be adapted to nonaeronautical systems by neglecting the
 aerodynamics terms and setting the parameters to correspond to those for the
 particular system under consideration .  The analysis provides a technique to determine
 the amplitude – frequency relation and also to analyse the stability of the equilibrium
 points .  The results were obtained subject to the assumptions that higher harmonics in
 the response are small and the amplitudes are slowly varying functions of time ,  such
 that the second time-derivatives can be neglected .  Examples in one- and two-degree-of-
 freedom systems with various parameters are given .  These assumptions are found to be
 valid for the examples given from the excellent agreement with numerical simulation
 results .  It is found that the amplitude – frequency response curve for a two-degree-of-
 freedom system has a much more complex structure compared to that for a
 one-degree-of-freedom system .  This is not surprising ,  since the amplitude-frequency
 relation can be described by a cubic equation for a one-degree-of-freedom system ;
 whereas it becomes a polynomial of degree 11 for a two-degree-of-freedom system .
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 Another interesting result observed in the examples studied is that for a
 two-degree-of-freedom system ,  harmonic solutions may not exist for certain values of
 the system parameters .  However ,  in those cases where harmonic solutions are found ,
 the accuracy of the analysis is verified by numerical integration of the exact equations
 that shows good agreement between the theoretical results and numerical
 computations .

 The application of the analysis to aeroelasticity is demonstrated by an example .  Only
 the ef fect of velocity is studied ,  and the response characteristics to variations in airfoil
 parameters have not been carried out ,  although such a study is rather straightforward ,
 using the analytical formulation .  The use of linear aerodynamics restricts the
 amplitudes of the plunge and pitch motions to be small .  For this reason ,  the complex
 jump phenomenon predicted for dynamic systems in a stationary medium with large
 forcing is not observed .  It is shown in the example that two peaks in the response
 curves are observed at low velocities .  As the velocity increases and approaches the
 linear flutter speed ,  only one peak is detected .  This is a common observation in
 aeroelasticity when binary flutter occurs .
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 APPENDIX A :  COEFFICIENTS IN EQUATIONS (13) AND (14)
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 APPENDIX B :  COEFFICIENTS IN EQUATIONS (20)

 y 1 ( x )  5  ( c 0 v  2  2  c 4  2  3 – 4 c 5 r  2 ) a 1  2  c 2 v b 1  1  ( c 1 v  2  2  c 6 ) a 2  2  c 3 v b 2  2  c 7 a 3  2  c 8 a 4  2  c 9 a 5  2  c 1 0 a 6  ,

 y 2 ( x )  5  c 2 v a 1  1  ( c 0 v  2  2  c 4  2  3 – 4 c 5 r  2 ) b 1  1  c 3 v a 2  1  ( c 1 v  2  2  c 6 ) b 2  2  c 7 b 3  2  c 8 b 4  2  c 9 b 5  2  c 1 0 b 6  ,

 y 3 ( x )  5  ( d 0 v  2  2  d 6 ) a 1  2  d 5 v b 1  1  ( d 1 v  2  2  d 3  2  3 – 4 d 4 R 2 ) a 2  2  d 2 v b 2  2  d 7 a 3  2  d 8 a 4  2  d 9 a 5  2  d 1 0 a 6  ,

 y 4 ( x )  5  F  2  [ 2 d 5 v a 1  1  ( 2 d 0 v  2  1  d 6 ) b 1  2  d 2 v a 2  2  ( d 1 v  2  2  d 3  2  3 – 4 d 4 R 2 ) b 2  1  d 7 b 3

 1  d 8 b 4  1  d 9 b 5  1  d 1 0 b 6 ] ,

 y 5 ( x )  5  a 2  2  e  1 a 3  2  v b 3  ,  y 6 ( x )  5  b 2  2  e  1 b 3  1  v a 3  ,  y 7 ( x )  5  a 2  2  e  2 a 4  2  v b 4  ,

 y 8 ( x )  5  b 2  2  e  2 b 4  1  v a 4  ,  y 9 ( x )  5  a 1  2  e  1 a 5  2  v b 5  ,  y 1 0 ( x )  5  b 1  2  e  1 b 5  1  v a 5  ,

 y 1 1 ( x )  5  a 1  2  e  2 a 6  2  v b 6  ,  y 1 2 ( x )  5  b 1  2  e  2 b 6  1  v a 6  .
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 APPENDIX C :  COEFFICIENTS IN EQUATIONS (21)

 m 1  5  c 2 v  2
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 APPENDIX D :  NOMENCLATURE

 a h  nondimensional distance from airfoil mid-chord to elastic axis
 b  airfoil semi-chord
 C h  damping coef ficient in plunge degree-of-freedom
 C a  damping coef ficient in pitch degree-of-freedom
 C L  aerodynamic lift coef ficient
 C M  pitching moment coef ficient
 F  applied force magnitude
 h  plunge displacement
 I a  airfoil mass moment of inertia about elastic axis
 K h  spring constant in plunge degree-of-freedom
 K a  spring constant in pitch degree-of-freedom
 m  airfoil mass per unit span
 P  external force
 Q  external moment
 R  response amplitude for  a
 r  response amplitude for  j
 r a  radius of gyration about elastic axis
 S  airfoil static moment about elastic axis
 T  reference time
 t  time
 U  free-stream velocity
 U L  linear flutter speed
 U *  nondimensional velocity
 x a  nondimensional distance from elastic axis to centre of mass
 a  pitch angle
 b  coef ficient of cubic spring
 z  damping
 m  airfoil – air mass ratio
 j  nondimensional displacement
 τ  nondimensional time
 f  Wagner function
 Ω  dimensional frequency
 v  nondimensional frequency


