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This paper investigates the dynamic response of a coupled two-degree-of-freedom system
with a cubic stiffness nonlinearity in both degrees of freedom. The mathematical model is
based on a coupled system of Duffing’s equations. The governing equations are derived for
a two-dimensional airfoil oscillating in pitch and in plunge, but they can be applied to
nonaeronautical problems, such as mechanical systems, by discarding the aerodynamics
terms and setting the appropriate parameters to correspond to those for the particular
dynamic system under consideration. Only the harmonic solution is considered and we use
the method of slowly varying amplitude to investigate the dynamic response of the system
to an external excitation. The equilibrium points are computed and a linear analysis is
carried out to determine the stability of the equilibrium points. Examples are given for a
dynamic system without aerodynamic forces to illustrate the complex structure of the jump
phenomenon where the solution jumps from one branch of the amplitude-frequency curve
to the other. An example in aeroelasticity is given which shows the behaviour of the airfoil
motion as the velocity approaches the linear flutter speed. Numerical simulations are also
carried out to verify the analytical results. © 1997 Academic Press Limited

1 INTRODUCTION

IN AEROELASTIC INVESTIGATIONS OF AIRCRAFT, we usually assume that the structural
behaviour of aircraft components is linear (Bisplinghoff et al. 1955; Fung 1969).
However, in reality nonlinearities are present in one form or the other. Structurally,
they may occur in the restoring forces and can be treated as nonlinear springs for
example, springs with free-play, hysteresis or cubic nonlinearities. These types of
nonlinearities have been investigated by Woolston et al. (1957) for a two-dimensional
airfoil performing pitching and plunging motions using an analog computer. There are
serious drawbacks in the use of an analog computer to study nonlinear flutter, and
accuracy is often not as high as we would desire in order to investigate the
characteristics of the airfoil motion fully.

An alternate approach was suggested by Shen (1959) using the well-known Kryloff &
Bogoliuboff (1947) method in nonlinear vibration theory. The original limitation of
weak nonlinearities can be removed by adopting a modification given by Popov (1957).
The analysis assumes the existence of a periodic solution dominated by the fundamen-
tal harmonic. The amplitude of oscillation in the degree of freedom which contains the
nonlinearity is prescribed, and the critical velocity at which the specified oscillation
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will be sustained is then determined. However, it has not been demonstrated how large
the magnitude of the nonlinearities is admissible and how the effects of initial
conditions on the flutter boundary can be accounted for.

For a one-degree-of-freedom system with cubic restoring force in the absence of
aerodynamic loads, Jones & Lee (1985) investigated the multi-valued response curve of
amplitude versus frequency and showed the effects of initial conditions on the steady
state of the system under forced oscillations. Lee & LeBlanc (1986) and Lee &
Desrochers (1987) expanded the numerical technique developed by Jones & Lee (1985)
and describe a method for nonlinear flutter analysis that eliminates the limitations
inherent in the earlier methods (Woolston et al. 1957; Shen 1959) by the use of a
time-marching finite-difference scheme. Using incompressible aerodynamics, the
aeroelastic equations for a two-dimensional airfoil performing plunging and pitching
motions are written as a pair of simultaneous finite difference equations. The effect of
initial conditions on nonlinear flutter was studied numerically by varying the displace-
ment from equilibrium of the pitch angle at the start of the airfoil motion. More
detailed studies were later carried out by Price et al. (1994, 1995) who computed power
spectral densities, phase-space plots, Poincaré maps and Lyapunov exponents of the
airfoil response to investigate the possibility of occurrence of chaos for certain airfoil
parameters.

In this study, we concentrate on the harmonic solution of a coupled two-degree-of-
freedom system with a cubic stiffness nonlinearity in both degrees of freedom. The
method of slowly varying amplitude is employed to analyse the harmonic response.
This results in an autonomous system of first-order nonlinear differential equations in
a 12-dimensional phase-space. A stable equilibrium point of the resultant system gives
one harmonic solution for the original system of equations. Linear analysis is then
carried out to determine the stability of the equilibrium point. The analysis demonstr-
ates that similarly to a one-degree-of-freedom system, a jump phenomenon from one
steady state to another may occur for certain system parameters and range of the
excitation frequency and amplitude. The amplitude response curve as a function of
excitation frequency has a much more complicated structure than the corresponding
one-degree-of-freedom system. Numerical integrations are used to verify the results
obtained from the theoretical analysis and they also reveal some interesting dynamical
features. Subharmonic solutions may exist under certain conditions, and these have
been investigated numerically by Wong et al. (1995).

2. THEORETICAL ANALYSIS

2.1. EQUATIONS OF MOTION OF A NONLINEAR COUPLED Two-DEGREE-OF-FREEDOM
SYSTEM WITH AERODYNAMIC FORCES

In this section, we investigate the harmonic response of a two-degree-of-freedom
system with a cubic spring nonlinearity in both degrees of freedom. We choose for our
system a two-dimensional airfoil oscillating in pitch and in plunge. The equations of
motion derived can readily be adapted to other nonaeronautical systems, such as
coupled mechanical systems, by neglecting the aerodynamics terms and setting the
appropriate parameters to correspond to the particular dynamic system under
consideration. It is well known that for a nonlinear system the output oscillations may
have the same or different frequencies than the input excitation when the amplitude of
the forcing function is varied. For a harmonic response, we restrict the output
oscillation to have the same frequency as the input excitation force.



NONLINEAR DYNAMICS AND AEROELASTICITY 227

Mid-chord

Elastic axis

Centre of mass

Figure 1. Two-degree-of-freedom airfoil motion.

Figure 1 shows the notations used in the analysis of a two-degree-of-freedom motion
of an airfoil oscillating in pitch and in plunge. The plunging deflection is denoted by #,
positive in the downward direction, « is the pitch angle about the elastic axis, positive
with the nose up. The elastic axis is located at a distance a,b from the midchord, while
the mass centre is located at a distance x,b from the elastic axis. Both distances are
positive when measured towards the trailing edge of the airfoil. The aeroelastic
equations of motion for linear springs have been derived by Fung (1969). For nonlinear
restoring forces such as those for cubic springs considered in this paper, they can be
written as follows:

£ xa 2 £+ () (64 B = (D), 1)
&5”+a”+2£a'+i(a+[3 a’) =r(1) 2)
7 g Tgete TP ’

where ¢ = h/b is the nondimensional displacement and the prime denotes differentia-
tion with respect to the nondimensional time 7, defined as

_U

=%

3)

In equations (1) and (2), @ is given by

@ ="%, )

a

where wg, (¢, w, and (, are the uncoupled plunging- and pitching-mode natural
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frequencies and damping ratios, respectively, r, is the radius of gyration about the
elastic axis, B; and 3, are the nonlinear spring constants, U* is defined as

U
U= )
and
_ P(1)b _ 2 (1)
PO == CUD+ D= s G+ s ®)

in which C,(7) and C,(7) are the lift and pitching moment, respectively. P(7) and
QO(1) are the external applied force and moment, m is the airfoil mass per unit length
and u is the airfoil-air mass ratio.
For incompressible flow, Fung (1969) gives the following expressions for C;(7) and
Cu(7):
Co(1) = m(¢" — apa” + a') + 21 (0) + £'(0) + (3 — ax)a’(0)}¢(7)

+om 0, (1 — 0)(a'(0) + €(0) + (4 — ap)a’() do, ™)

CorlT) = 7103 + a)a(0) + £/(0) + (b — ay)a’ (0)}(7)
i+ ay) j (1 — o)a'(0) + £(0) + (L — )’ (o)} do

m m m
+Eah(§”—aha”)—(%—ah)ia’ —Ea", (8)
where the Wagner function ¢(7) is given by

d(T)=1— e " — e, )

and the constants ; =0-165, ¢, =0-335, €, =0-0455 and €, =0-3 are given by Jones
(1940).

2.2. AMPLITUDE-FREQUENCY RELATION FOR HARMONIC OSCILLATION

We assume that the external applied forces are sinusoidal and without loss in
generality, the excitation is only applied in the pitch degree of freedom. In this case,
P(1) =0 and we write

Q(1) = Qysin(wT) (10)
and let
O
F= mU*r%’ (1n

so that the second term in equation (6) for r(7) becomes F sin(w7).
After introducing four new variables

W1=J' e " a(o)do, szf e " q(o)do,
o T (T) (12)
w3=J e " ¢(0) do, w4=j e 2" ¢(o) do,
0

0



NONLINEAR DYNAMICS AND AEROELASTICITY 229
equations (1) and (2) can be written as
Col" + 1" + € + s’ + €+ csE F coa + cowy F cgWy + cows + crows = F(T),  (13)

d()f” + dla” + dza’ + d3a + d4013 + d5§’ + d6§ + d7W1 + diz + d9W3 + d]()W4 = g(T),
(14)
and the coefficients in these equations are given in Appendix A.
For large values of T when transients are damped out and steady-state solutions are

obtained, f(7) =0. For sinusoidal external forces, we assume the plunge and pitch
motion to be of the following form:

&(1) = ay(1) cos(wT) + by(7) sin(wT), «a(T)=ax(T) cos(wT) + by(7) sin(wt). (15)

Here a; and b; (i =1, 2) are assumed to be slowly varying functions in 7. The second
time derivatives are considered to be small and neglected. This approach is often used
in perturbation analysis (Jordan & Smith 1983). We write w; (i =1, 2, 3, 4) as follows:

w; = as(T) cos(wT) + b3(T) sin(wT), Wy = a,4(T) cos(wT) + b,(T) sin(wT),

ws = as(T) cos(wT) + bs(7) sin(wT), W, = ae(T) cos(wT) + be(T) sin(wT). (16)
From equations (12) we take the time derivative of w; and obtain
wi(T) = a(T) — €;wy(T), wi(T) = a(T) — eaw(T), (17)
wi(1) = (1) — ews(1),  wi(T) = &(1) — e2wa(7).
Note that £(7) and «’(T) can be written as
&E(1) = 3r*(a, cos(wT) + b, sin(wT)) + {higher harmonics in 3wT}, (18)

(1) = 3R*(a, cos(wT) + b, sin(wT)) + {higher harmonics in 3w},
where

r*=a?+ b3, R*=a5+ b3.

Here r and R denote the amplitudes of ¢ and « respectively. Assuming the higher
harmonic terms in equations (18) to be small and upon substituting equations (15), (16)
and (18) into (13), (14) and (17), we obtain a system of 12 first-order nonlinear
ordinary differential equations after matching the coefficients of cos(w7) and sin(wT).
The resulting equations in matrix form are given as:

Ax" =y(x), (19)
where
Cy cho C3 chl 1 0 ... 0
H O _ZwC[) Cy _ZwC] C3 O 1 P 0
1 e
0 1 d5 deo d2 2wd1 """"" (20)
“ody ds  —2wd, ds 0 ... 0 1

x={a;, by, as,...,as bs}", y(x) = {y1(x), y2(x) - . -)’IZ(X)}T

Here [ is an 8 X 8 identity matrix and y;(x) are given in Appendix B. Since the interest
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is in the harmonic solutions of equations (1) and (2) to external sinusoidal excitations,
periodicity condition is enforced by requiring that a; and b; are constants. The harmonic
solutions of equations (13) and (14) are identified by the equilibrium points of the
system of equations (19). Setting a; =0 and b; =0, we obtain a system of 12 nonlinear
algebraic equations. In deriving the expressions for a,, b,, a,, and b,, equation (19) is
first solved for as, bs, . .., as, and b which are then substituted into the expressions for
a,, by, a,, and b, to give the following:

—mya; +piby —na, +5,b, + Q1”2b1 =0,

p1a, + mlbl +S1a2 + nlbz + qlrzal = 0,

1)
—myay + poby — noas + (s + 2 R*)b, — F=0,
P2ay +myby +nyby + (s, + q2R?)a, =0,
where the coefficients m, m,, etc. are given in Appendix C.
A frequency—amplitude relation can be derived and is given by
(D + D3)R>— D3F*=0, (22)

where

Dy = my[man, + py(ss + @R + (py + q17°)[pans — ma(s, + ¢.R?)] — ny(p3 + m3),

D, =my[psn, — my(s> + q2R?)] = (p1 + q17°)[mans + pa(s, + ¢2R?)] + 51(p5 + m3),

(23)
D3 =[mym,+ (pi + qir°)pa] + [mipa— (pi + q1r7)m, ),
and
zzm%"’ (1 +C11”2)2r2

R
n?+s?

(24)

The basic relation between the amplitude (r and R) and frequency (w) for the
two-degree-of-freedom system governed by equations (1) and (2) are now represented
by equations (22) and (24). Clearly, a jump phenomenon and a multi-valued
amplitude-frequency relation can be observed for the coupled system. Substituting the
definitions given in Appendices B and C into equations (22) and (24), we find that the
resulting equation is a polynomial of degree 11 in *. Once the value of r is computed,
then R can be determined from equation (24). For certain values of w both equations
admit multi-valued amplitudes. Using the values of r and R, the equilibrium points are
then determined from equations (21).

2.3. LINEAR STABILITY ANALYSIS

To study the linear stability of the system of equations given by equation (19) about the
equilibrium point x,, we introduce a small perturbation in the form

X =x, +me'’, (25)
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where |n| <« 1. Substituting into equation (19), we obtain the following equation:
A’ +Am)e’" = y(x, +ne). (26)

The right-hand side of equation (26) is a nonlinear function which can be linearized
using Taylor’s expansion, such that

y(x. +me) = y(x.) + D [y(x.) e’ + O(nl). 27)

Define the Jacobian matrix D,[y(x.)]=J,, and since y(x.) =0, we obtain from
equation (26) the following:

W =[A", ~ Al (28)
The linear stability of x, is determined by the characteristic equation
A7, — M| =0, (29)

and x, is stable if Re(A) <0 for all the roots.

3. RESULTS AND DISCUSSION

In Section 2, a coupled two-degree-of-freedom system with a cubic stiffness non-
linearity in both degrees of freedom is studied. The equations are derived using a
physical model of an airfoil submerged in a moving medium. However, the analysis is
applicable to other mechanical systems in a stationary medium, and the aerodynamic
forces can be discarded by dropping the appropriate terms. We first investigate the
motion of a one- and two-degree-of-freedom dynamic system and later give an
example in aeroelasticity. In order to apply the analysis to systems in the absence of
aerodynamic forces, we show the necessary modifications to the coefficients in
equations (13) and (14) by the following discussion.

For an airfoil placed in a stationary medium, the equations of motion in dimensional
form are shown below after neglecting the aerodynamics terms in the equations given
by Fung (1969):

mh" + Sa” + C,h' + K,,(h + B,h°) = P(1), 30
Sh"+1L,a"+ C,a’ + K, (a + B.B°) = O(1). G0
These represent the equations for a two-degree-of-freedom system with inertia
coupling. Since U =0, equations (30) can be reduced to (1) and (2) by defining a
nondimensional time 7 =1¢/T to replace equation (3) where T is a reference time. By
re-defining equation (5) to be U* =1/Tw, and retaining the previous nondimensional
parameters, equations (13) and (14) can be used in place of (30) by setting ¢, =1,
C1=Xo, C=2L0]U*, c,=(0/U*), ¢s=(0/U*)B;, €3=C6=0C7=Cs=Co=C1o=0,
do=x,/r, di=1, dy=2{,/U* ds=1/U*, d,=B,/U* ds=ds=d,=ds=do=
diy=0. We note that w is a nondimensional frequency and is related to the
dimensional frequency by

= 1
UQ,’ 1)

where Q, is the pitch natural frequency.
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3.1. ONE-DEGREE-OF-FREEDOM DYNAMIC SYSTEM

For the sake of completeness, we give a brief discussion of a one-degree-of-freedom
system when the aerodynamics terms in equations (1) and (2) are neglected. Most of
the material found in this section is given by detail by Jones & Lee (1985). If x,, is set
equal to zero in equations (1) and (2), the system can be decoupled and the resulting
equations to be solved are those for a simple one-degree-of-freedom vibration system
with a cubic nonlinearity. For example, if we consider the o degree-of-freedom motion,
we can write equation (2) in the form of a Duffing’s equation:

a"+ca' + ka + Ba’ = F sin(wT). (32)

Neglecting the damping term ce’, Duffing derived the following relation between the
amplitude R and the frequency w for the above nonlinear equation (Stoker 1950):

w2=k+%,BR2—E, (33)
R

which relates w to the amplitude R of the oscillation. Equation (33) is an interesting
relation in that, for certain values of the parameters, there are three values of R
associated with one value of w. This gives rise to a jump phenomenon in which the
solution jumps from one branch of the amplitude—frequency curve to another. A
first-order expansion can also be developed for equation (32) which includes the
damping term ca’. This yields (Mickens 1981)

2R2 12
= (34

F
2=1+3 Rzﬂ:f[l—
¢ PR ER F?
where we have assumed that the linear coefficient, k, is equal to 1. From equation (34)
we observe that

IR|<F/c, (35)

where F is assumed positive. Jones & Lee (1985) used the method of Kryloff &
Bogoliuboff (1947) and obtained a more accurate amplitude—frequency relation, as
follows:

> g 2p2 2\ 9172
w2=1+%,3R2—%j:E[1—CF2 <1+%BR2—CZ>] ; (36)

from which an upper limit for R can be found, namely

R (=) [ (-5) 5] &

in which the + sign is used for 8 >0.

Comparisons of the maximum amplitude given by equations (35) and (37) differ
significantly in the case studied by Jones & Lee (1985) and the estimate from equation
(35) can be grossly misleading.

It should be noted that these approximations do not yield any information about the
effect of initial conditions on the final solution after the transients have died down. In
other words, the effect of the initial conditions which determines the branch of the
jump where the solution lies is not clear from the analytical studies. Only numerically
can we assess the effect of the initial conditions.

To study the behaviour of equation (32) we choose for our model the constants
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Figure 2. Response curves for Duffing’s equation: — - -, equation (33); ---, equation (34); —-- -,

equation (36); O, numerical, a(0) = 2-0.

c=01, k=1, B=0-1 and F =0-4. This corresponds to the following airfoil para-
meters in equation (2): {, =0-05, U* =1, B, =0-1 and F = 0-4. The response curve R
versus o is shown in Figure 2 for 0-2 < w =1-4 and in Figure 3 for 118 = w =1-38. In
the latter case we observe more clearly bending over the response curve to the right. It
can be seen that the approximation (36) obtained using the Kryloff & Bogoliuboff
method is much more accurate than formula (34) in the region about the peak at R = 3.
Also shown is Duffing’s approximation based on zero damping (¢ = 0).

The numerical simulations were performed using Houbolt’s (1950) scheme. The
details of the finite-difference time-marching technique are given by Jones & Lee
(1985). Our experience in generating the response curve showed that steady-state
solutions were obtained in typically 10-40 cycles of period 271/w. Away from the
nonunique parts of the curve, i.e. w =1-18 and w =1-31, solutions were obtained with
fewer iterations. In the range 1-18 <w <1:31 the branch of the response curve on
which the solution lies depends upon the initial conditions «(0) and «'(0). For
instance, with a'(0) = 0 several computations were made with various starting values
a(0). With «(0) =2 the jump from the lower branch occurred at about w = 1-22 while
with «(0) = —3-5 the jump occurred at about w = 1-32, as shown on Figure 3.
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Figure 3. Response curves for Duffing’s equation magnified in the jump region: — — —, equation (33); — - -,

equation (34); — - - —, equation (36); A, numerical, «(0) = —3-5; O, numerical, «(0) = 2-0.
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3.2. Two-DEGREE-OF-FREEDOM DyNAMIC SYSTEM

We shall consider two examples to illustrate the complex structure of the jump
phenomenon for a two-degree-of-freedom dynamic system with inertia coupling. The
coefficients are arbitrary, chosen to generate a set of differential equations for analysis
purposes, and they coincide with those equations studied by the authors previously
using numerical schemes [for example, Wong et al. (1995)]. Other parameters can be
used, since the analysis is formulated with only the assumptions that the response is
harmonic and the amplitudes are slowly varying functions of time. Hence there should
be no limitations to the range of parameters of the system, as long as these assumptions
are satisfied. The first example considers the two uncoupled natural frequencies to be
equal, while the second examines the case where the frequency separation is fairly
large.

3.2.1. Example |
The equations studied in this case are
0-25a" + & +0:25¢" + £+ 0258 =0,

38
a”+025¢"+0-25a" + a + 0-25a° = F sin(wT). 38)

The coefficients of these two coupled equations are similar. Following the discussion on
equations (30), these expressions can be obtained from (1) and (2) by setting x, = 0-25,
r,=1, U¥*=1, =10, {, ={,=0-125, B, = B, =0-25.

To give an indication of the response characteristics for a one-degree-of-freedom
system with the given system parameters, we decouple the equations into single
degree-of-freedom systems by setting x, = 0. The results thus obtained are used for
comparison purposes with the two-degree-of-freedom system. Figure 4 shows the
amplitude response curve of «(T) against the excitation frequency w corresponding to
F=0-5,1-5 and 3-0, respectively. The results are typical of those for the Duffing
equation with different amplitudes of the excitation force (Stoker 1950). It can be
verified that the frequency-amplitude relation given in equation (22) is identical to (36)
for the one-degree-of-freedom system. For the coupled system governed by equations
(38), Figure 5(a, b) shows the amplitude response curves of «(7) and &(7) against the
excitation frequency w for the two-degree-of-freedom system corresponding to
F=0-5,1-5 and 3-0. These results were plotted from the relations given in equations

Figure 4. Response curves for different excitation of a one-degree-of-freedom system.
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Figure 5. Response of a two-degree-of-freedom system with different excitation: (a) a-response; (b)
&-response.

(22) and (24). Clearly, the structure of the response curves for the two-degree-of-
freedom system is much more complex than that for the one-degree-of-freedom system
as F increases. For small values of F, there always exists a harmonic solution in both
one and two-degree-of-freedom systems. As F increases, we observe the occurrence of
a jump phenomenon and multi-valued amplitude-frequency relations in both systems.
Another interesting result noted here is that unlike a one-degree-of-freedom system,
we found that for a particular F and for certain values of w, there may not exist a
harmonic solution for the nonlinear system.

The response curve can be divided into various segments where it is possible to
identify the existence of harmonic solutions. For example, at F =1-5 in Figure 5(a,b)
the linear stability analysis given by equation (29) predicts that for w <1-3015 the
system has only one harmonic solution. For 1-3015 < w <1-3095, the system has two
harmonic solutions and there exists a jump phenomenon in this segment. In the interval
(1-3095, 1-3555), the corresponding equilibrium points are stable, but in the interval
(1-3555, 1-5038), harmonic solution is not possible. This interval decreases as @ moves
away from unity. Some preliminary studies by computing the eigenvalues of the fixed
points of Poincaré maps show that there exists two Hopf bifurcations at @ = 1-3555 and
1-5038. The solutions for 13555 <w < 1-:5038 appear to be quasiperiodic, but more
detailed results confirming this observation will appear in a later paper. For
1-5038 < w < 1-595, a harmonic solution is found and increasing w to the interval
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(1-595, 1-7234), a second jump phenomenon occurs. For w >1-7234, only harmonic
solutions are predicted.

These observations are confirmed by numerical integration of the equations of
motion and are represented by the open circles in the figure for F =1-5. When F = 3-0,
the responses are more complex than those exhibited for F = 1-5. In addition to failure
in reaching harmonic solutions for certain values of w, we also observe the existence of
chaotic motions and subharmonic solutions. However, this case has not be extensively
studied both analytically and numerically as in the previous case for F = 1-5.

3.2.2. Example 11

In this example, the analytical results are supplemented by results from numerical
simulations. The time-marching finite-difference techniques used are an eighth order
scheme given by Lee & LeBlanc (1986) and a fourth-order Runge-Kutta technique
whereby equations (13) and (14) are expressed in finite difference form. Both methods
given the same results.

The equations studied in this case are given as follows:

&' +02a"+0-8¢ +0-1£ =0,

39
0-2¢"+ "+ 0-1a’ + & + 0-1a® = F sin(w7), >

and they are obtained from equations (1) and (2) by choosing the parameters x, = 0-2,
r,=1, U*=1, ®*=0-8, ¢, =0-05, =0, B, =01, B,=0-125. Again, it is emphasized
that the system parameters are chosen to coincide with a set of different equations that
the authors have previously studied and there is no specific significance to the chosen
parameters.

Figure 6(a) shows the amplitude response curve r for &(7) against the excitation
frequency w when F = 1-0. The corresponding response in the « degree of freedom is
given in Figure 6(b) which shows a more complex structure in the jump region. We
find that, for @ = 1-5, equations (39) have seven equilibrium points. Once these values
are computed, the stability can be determined from the sign of the real part of all the
eigenvalues evaluated from equation (29). The results are summarized in Table 1. Only
three equilibrium points are found to be stable according to the linear stability
analysis.

A detailed numerical study was also carried out for this particular example to
demonstrate some of the features of the coupled system. The existence of multi-valued
harmonic solutions is confirmed by a numerical simulation using equations (13) and
(14). Figure 7(a—c) shows three stable harmonic solutions for «(7) and &(7) from the
numerical solutions using the following initial conditions:

[(0), a’(0), £(0), £'(0)] =[~1, 0,0, 0],
[@(0), @'(0), £(0), £'(0)] =[-3, 5, =3, 5],
[(0), a’(0), £(0), £'(0)] =10, 5, 0, 5].

The first set of initial conditions gives a solution on the lower branch of the
amplitude—frequency curve, while the second set gives a solution on the upper branch.
The third set of initial conditions gives the solution between these two branches. The
solid line in the figures denotes the « response while the dashed line denotes the ¢
response. Our computational results indicated that the harmonic solutions at the upper
branch of the amplitude—frequency response curve are in phase with approximately the
same amplitude. On the lower branch, the solutions have different amplitudes and are
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Figure 6. Amplitude response curve of a two-degree-of-freedom system with F =1-0: (a) &-response; (b)
a-response.

180° out of phase. In-between these two branches, the «- and &- amplitudes are close to
those on the lower and upper branches, respectively. The phase difference between the
a and ¢ responses is 180°. From our analysis, the analytical solutions (15) can be
written as

a(T) = R sin(wT + ¢,), E(1) =rsin(wT + ¢,). (40)

Once the values of g; and b; are computed, we obtain the amplitudes R and r and the
corresponding phase angles. These results are shown in Table 2 and comparison with
numerical results shows good agreement.

Phase-space plots of a’(T) versus «(7) and &'(T) versus £(7) were computed and
typical plots are given in Figure 8(a—c) for £ in the lower, upper, and middle branches
of the amplitude-frequency response curve. The forcing frequency is w =1-5. These

TaBLE 1
Equilibrium points and signs of Re(A) for Example 11

a, b, a, b, Re(A;) Re(A;) Re(as) Re(A,)  Stability
0-042 0293 —0-135 —0-940 - - - - Stable
0-559 0-961 —1-686 —2-898 + + - + Unstable
0-892 —1-127 —2-567 —3-244 + + - - Unstable
0-494 —4-244 —0-089  0-766 - - - - Stable
2:023 —3-019 —2-066  3-083 - + - - Unstable

—3-434 -3-615 —-3-162 —3-329 - - + + Unstable
—3-734 3362 —3-682  3-315 - - - - Stable
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a(1), &(1)
(=)

-2

Figure 7. (a) Time series of response on lower branch of jump; (b) time series of response on upper
branch of jump; (c) time series of response between upper and lower branches of jump. —, a-response;

figures, and similar ones with different initial conditions that are not included in this
paper, show that steady state orbits are reached after the transients have been damped
out. The time it takes to reach steady state depends on the initial conditions and the

6280

a(1), §(1)
o

&-response.

value of the forcing frequency w.

Power-spectral-density plots are often used to investigate the periodic nature of the
system response. A typical power spectral density plot for the & degree-of-freedom

TABLE 2

Amplitudes and phases of response for Example II

6280

R ¢1 (deg) r ¢, (deg) ¢ — ¢, (deg) R r 1 — ¢, (deg)
Analytic Analytic Analytic Analytic  Analytic = Numerical Numerical Numerical
0-9497 8 0-2960 -172 180 0-9510 0-2964 180
3-3528 1-1118
4-1368 1-4373
0-7712 174 42727 -6 180 0-7727 4-3283 180
3-7112 3-6341
4-5913 4-9860
4-9544 —48 5-0245 —48 0 5-0262 5-0972 0
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Figure 8. (a) &-response on the lower branch of jump; (b) &-response on the upper branch of jump; (c)
&-response between upper and lower branches of jump.

motion at w =1-5 is given in Figure 9. This figure clearly shows periodic motion, with
the fundamental harmonic at least three orders of magnitude higher than the second
harmonic. Notice that the harmonics with frequencies 3w and 5w observed in the
figures can be directly obtained from expanding o’ and & using equations (18). The
assumption made in the theoretical analysis that higher harmonics can be neglected
appears to be well justified in this example.

3.3. AN EXAMPLE IN AEROELASTICITY FOR A Two0-DEGREE-OF-FREEDOM SYSTEM

To investigate the effects of aerodynamics in equations (13) and (14), we use the same
airfoil parameters as those in Example II and choose a,=—3 and w =25. This
corresponds to a light airfoil whose elastic axis is placed at the j-chord point. There is
no particular significance to the choice of this airfoil configuration. Other values of a,,
and p can be used, since there are no restrictions on the parameters in the analysis. In
order for the linear aerodynamics to be valid, the value of the forcing function F is
kept small, so that the pitch angle is less than 15° while at the same time the plunge
motion ¢ is within the range for equations (7)—(9) to be applicable. These values are
chosen assuming the airfoil thickness-ratio is small, and the profile permits attached
flow in a cycle of oscillation. Using these airfoil parameters, we first determine the
linear flutter speed obtained by setting the nonlinear stiffness terms to be zero. Its
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Figure 9. Power spectral density for £-response.

value U, is found to be 2-423. Two values of U* will be investigated, one at 41% and
the other at 95% of U,, that is, U* =1 and 2-3019.

The ¢- and a-amplitude-frequency curves are given in Figure 10(a, b), where the
amplitude ratios r and R are shown for U*=1 and F =0-03. The units of R are
degrees. This value of excitation is chosen in order that the linear aerodynamics theory
can be expected to be valid. The case without consideration of aerodynamics is shown
in Figure 11(a,b). Both sets of figures show the presence of two peaks at w
approximately 0-86 and 1-07. These frequencies can be estimated from equations (13)
and (14). By decoupling the two equations, we can show that w, =1/U* and w; = w,w
by definition. Since U*=1 and ®>=0-8 in this example, we obtain w,=0-89 and
w, =1 which are close to the observed values in the figures. It is interesting to see that
the aerodynamic forces decrease the amplitude of the ¢-mode, while the a-mode
remains relatively unchanged. The numerical simulation results are also included in the
figures and they are denoted by the open circles. It is seen that good agreement is
obtained. Comparison with Figure 6(a, b) shows that the complex jump condition is not
encountered. However, when the forcing amplitude F is increased to larger values,
these jumps are also detected for the nonaerodynamic case. No computations were
carried out with aerodynamic forces included since the linear aerodynamics assump-
tions are violated.

Increasing U* to 0-95 U, shows the disappearance of one of the modes [Figure
12(a, b)]. It is seen from this figure that the peak occurs at o = 0-43. For the uncoupled
modes, the natural frequencies w, and w, are estimated to be 0-4344 and 0-3885,
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Figure 10. Amplitude response curve of a two-degree-of-freedom system for u =25, U* =1 in a moving
medium: (a) &-response; (b) a-response.

respectively, for U*=2-3019 and @&@>=0-8. The forcing amplitude in this case is
F =0-002, which is very small. However, this is expected since only a weak external
forcing to the airfoil is required in order to maintain a harmonic motion of sufficiently
large amplitude as the linear flutter speed is approached. Also, near the flutter
boundary, coalesence of the two modes accounts for the observation of only one peak
in Figure 12(a, b).

Comparison of Figure 11(a, b) with 13(a, b) shows the shapes of the response curves
to be similar, except for the locations of the peaks and their amplitudes. The
dimensional frequency ratio Q/Q,, is actually the same since, in the form given as o, it
is scaled by a factor of U* as shown in equation (31). The differences in amplitude are
due to the value of the forcing F which decreases from 0-03 to 0-002. In Figure 12(a),
the peak location when expressed in ratio of dimensional frequencies is 0-9898, which
is close to the pitch frequency in Figure 10(a). In these two examples, multiple values
are not predicted for these values of F. The solution is harmonic, and the stability
analysis shows all real parts of A in equation (21) to be negative.
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Figure 11. Amplitude response curve of a two-degree-of-freedom system for u =25, U* =1 in a stationary
medium: (a) &-response; (b) a-response.

4. CONCLUDING REMARKS

In this paper, we investigate the dynamic response of a coupled two-degree-of-freedom
system with a cubic nonlinearity in the restoring force. The system chosen for our
model is a two-dimensional airfoil oscillating in pitch and in plunge. The equations
formulated can readily be adapted to nonaeronautical systems by neglecting the
aerodynamics terms and setting the parameters to correspond to those for the
particular system under consideration. The analysis provides a technique to determine
the amplitude—frequency relation and also to analyse the stability of the equilibrium
points. The results were obtained subject to the assumptions that higher harmonics in
the response are small and the amplitudes are slowly varying functions of time, such
that the second time-derivatives can be neglected. Examples in one- and two-degree-of-
freedom systems with various parameters are given. These assumptions are found to be
valid for the examples given from the excellent agreement with numerical simulation
results. It is found that the amplitude—frequency response curve for a two-degree-of-
freedom system has a much more complex structure compared to that for a
one-degree-of-freedom system. This is not surprising, since the amplitude-frequency
relation can be described by a cubic equation for a one-degree-of-freedom system;
whereas it becomes a polynomial of degree 11 for a two-degree-of-freedom system.
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Figure 12. Amplitude response curve of a two-degree-of-freedom system for u =25, U*=0-95U, in a
moving medium: (a) ¢-response; (b) a-response.

Another interesting result observed in the examples studied is that for a
two-degree-of-freedom system, harmonic solutions may not exist for certain values of
the system parameters. However, in those cases where harmonic solutions are found,
the accuracy of the analysis is verified by numerical integration of the exact equations
that shows good agreement between the theoretical results and numerical
computations.

The application of the analysis to aeroelasticity is demonstrated by an example. Only
the effect of velocity is studied, and the response characteristics to variations in airfoil
parameters have not been carried out, although such a study is rather straightforward,
using the analytical formulation. The use of linear aerodynamics restricts the
amplitudes of the plunge and pitch motions to be small. For this reason, the complex
jump phenomenon predicted for dynamic systems in a stationary medium with large
forcing is not observed. It is shown in the example that two peaks in the response
curves are observed at low velocities. As the velocity increases and approaches the
linear flutter speed, only one peak is detected. This is a common observation in
aeroelasticity when binary flutter occurs.
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APPENDIX A: COEFFICIENTS IN EQUATIONS (13) AND (14)
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APPENDIX B: COEFFICIENTS IN EQUATIONS (20)
Y1(x) = (cow® — ¢4 — 3csr7)a; — c,wb; + (¢i 0> — ¢6)a, — c3wb, — 705 — Csy — Colls — Crols,
(%) = cawa; + (cow® — ¢4 — 3¢517)by + czwas + (cL0> — ¢g)by — ¢b3 — csby — cobs — c1obs,
y3(x) = (dyw® — dg)a, — dswb, + (dyw® — ds — 3d,R*)a, — dwb, — dya; — dga, — doas — doas,

yu(x) =F — [—dswa, + (—dow> + dg)b, — dywa, — (dyw® — d3 — 3d,R*)b, + d;b;
+dghby + dobs + dyobg],

Vs(x) =a, — €;a; — wbs, Yo(x) = b, — €, b5 + was, y7(x) =a, — €;a, — wb,,
Vs(x) = b, — €,b4 + way, Yo(x) = a, — €,as — wbs, Yio(x) = by — €,bs + was,

yn(x) =a; — €,as — wbs, Vio(x) = by — €:b6 + wa.
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APPENDIX C: COEFFICIENTS IN EQUATIONS (21)
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APPENDIX D: NOMENCLATURE

nondimensional distance from airfoil mid-chord to elastic axis
airfoil semi-chord

damping coefficient in plunge degree-of-freedom
damping coefficient in pitch degree-of-freedom
aerodynamic lift coefficient

pitching moment coefficient

applied force magnitude

plunge displacement

airfoil mass moment of inertia about elastic axis
spring constant in plunge degree-of-freedom
spring constant in pitch degree-of-freedom
airfoil mass per unit span

external force

external moment

response amplitude for «

response amplitude for &

radius of gyration about elastic axis

airfoil static moment about elastic axis
reference time

time

free-stream velocity

linear flutter speed

nondimensional velocity

nondimensional distance from elastic axis to centre of mass
pitch angle

coefficient of cubic spring

damping

airfoil-air mass ratio

nondimensional displacement

nondimensional time

Wagner function

dimensional frequency

nondimensional frequency
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